Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group
نویسندگان
چکیده
منابع مشابه
Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group
We revisit the work of the first named author and using simpler algebraic arguments we calculate integrals of polynomial functions with respect to the Haar measure on the unitary group U(d). The previous result provided exact formulas only for 2d bigger than the degree of the integrated polynomial and we show that these formulas remain valid for all values of d. Also, we consider the integrals ...
متن کاملSymbolic integration with respect to the Haar measure on the unitary group in Mathematica
We present IntU package for Mathematica computer algebra system. The presented package performs a symbolic integration of polynomial functions over the unitary group with respect to unique normalized Haar measure. We describe a number of special cases which can be used to optimize the calculation speed for some classes of integrals. We also provide some examples of usage of the presented package.
متن کاملOn the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles
For the unitary ensembles of N × N Hermitian matrices associated with a weight function w there is a kernel, expressible in terms of the polynomials orthogonal with respect to the weight function, which plays an important role. For the orthogonal and symplectic ensembles of Hermitian matrices there are 2 × 2 matrix kernels, usually constructed using skew-orthogonal polynomials, which play an an...
متن کاملa comparison of teachers and supervisors, with respect to teacher efficacy and reflection
supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...
15 صفحه اولIntegration with Respect to a Vector Measure and Function Approximation
The integration with respect to a vector measure may be applied in order to approximate a function in a Hilbert space by means of a finite orthogonal sequence {fi} attending to two different error criterions. In particular, if ∈ R is a Lebesgue measurable set, f ∈ L2( ), and {Ai} is a finite family of disjoint subsets of , we can obtain a measure μ0 and an approximation f0 satisfying the follow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2006
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-006-1554-3